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Quantum dimer model with extensive ground-state entropy on the kagome lattice
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We introduce a quantum dimer model on the kagome lattice with kinetic terms allowing from three to six
dimers to resonate around hexagons. Unlike the models studied previously, the different resonance loops
appear with differensigns(given by the parity of the number of dimers involye@hese signs naturally appear
when performing the lowest-order overlap expangiBokhsar and Kivelson 198&f the Heisenberg model.

We demonstrate that the quantum dimer model has an extensive zero-temperature entropy and has very
short-range dimer-dimer correlations. We discuss the possible relevance of this kind of quantum dimer liquid
to the physics of the spié-Heisenberg model on the kagome lattice.
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I. INTRODUCTION (i) The Hamiltonian allows dimerdrom three to six at a
time) to resonate around hexagons with amplitudes that have
Quantum frustrated Heisenberg antiferromagnets are fasontrivial signs These signs are those arising when perform-
cinating systems that can display a vast variety of exotidng the lowest-order expansigim the dimer overlap param-
phases and phenomena. Systems with strong quantum flueter introduced by Rokhsar and Kivelsthsee Sec. IV of
tuations where no magnetic long-range order develops dowmthe KAFH Hamiltonian in the valence-bond subspice.
to zero temperaturé'spin liquids” loosely speaking are of  These signs are the crucial difference with the solvable QDM
particular interest because they do not have direct classicale introduced previousK* For this reason also quantum
analogs and are strongly interacting problems that residilonte Carlo simulations would face the well-known sign
many simple theoretical approaches. Focusing on two diproblem.
mensions and spif; two kinds of magnetically disordered (ii) In addition to the topological degeneracy, a feature of
phases are well understood: valence-bond cry$BC) and  dimer liquids, the ground state has a degeneracy which is
short-range resonating valence-bdRYB) liquids. Both are  exponential with the number of sites, that is, @xtensive
characterized by short-ranged spin-spin correlations but theero-temperature entropy
VBC has long-ranged singlet-singlet correlations and gapped (iii) The ground states have short-ranged dimer-dimer cor-
spin-1 excitations whereas the RVB liquid has short-rangedelations, they aredimer liquids We studied the model
singlet-singlet correlations, topological order, and spin- through simple mean-field approximations as well as numeri-
(spinon excitations. cally and we propose a picture in which the system is critical
Despite intense theoretical effoffs® the physics of the (or at least close to a critical pojnt
spin4 kagomé’ antiferromagnetic Heisenberg model Because some parts of the paper are relatively indepen-
(KAFH) is still debated. For instance, there is still no con-dent, we will now summarize it so that readers may directly
sensus on the mechanisms that produce the unusually large to a specific part. In Sec. Il we review some results on the
density of singlet states that was observed numeri¢aff.  KAFH model. Although this paper is mostly devoted to a
Quantum dimer modet®'® (QDM) are effective ap- dimer model (sort of extreme quantum limit of the $2)
proaches to the phases of antiferromagnets which are domgépin4 mode), we find it useful to review well established
nated by short-range valence bonds. These models are dects concerning thepin (Heisenberyy model and we moti-
fined in the Hilbert space of nearest-neighbor valence bondate the QDM approach to the KAFH. In particular, in Sec.
(or dimep coverings of the lattice and contain kinetic- as Il F, we present numerical resulispectrum and specific
well as potential-energy terms for these dimers. These modiea) obtained by diagonalizing exactlpn finite-size sys-
els can often be simpler than their spin parents and are amé&msg the Heisenberg model restricted to nearest-neighbor
nable to several analytic treatments because of their closelence-bonds subspace. In Sec. Il we discuss general prop-
relations to classical dimer problerffsising models, and,,  erties of dimer coverings on lattices made of corner-sharing
gauge theory®?1?>These models can offer simple descrip- triangles. These propertiésxistence of pseudospin variables
tions of VBC (Ref. 18 as well as RVB quuid%g'21 and a and their dual representation in terms of arrpsn out to
natural question is whether QDM can describe other phasebge useful to define and analyze QDM on these lattices, in-
and, in particular, whether they can describe phases witbluding kagome. In Sec. IV we explain the Rokhsar-Kivelson
gapless singlet excitationMotivated by the problem of the overlap expansion when applied to the family of lattices
spin+ KAFH, we investigated some QDM on the kagome mentioned above. At lowest order the kinetic-energy terms
lattice. Because of the corner-sharing triangle geometryhave signs depending on the parity of the number of dimers
dimer coverings can be handled in a much simpler (weith involved. Ignoring the amplitudes and keeping only these
pseudospin variabl2é) than on other lattices. Exploiting signs(Sec. \j, we get kinetic(i.e., nondiagonaldimer op-
this property we introduce a QDKtalled thew model there-  erators(h) defined on every hexagon of kagome and
after) with several interesting properties. which realize an original algebré) w(h)?=1, (i) they anti-
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commute on neighboring hexagon, afiid) commute other-
wise. The rest of the paper is devoted to the analysis of the
Hamiltonian defined as the sum of all thgh). In Sec. V D

we start by solving exactly the dimer model on a one-
dimensional lattice. It sustains criticahlgebrai¢ correla-
tions and has an extensive zero-temperature entropy. Al-
though we did not succeed in finding an exact solution to it,
we were able to showSec. V B that the kagomex model

also have such a zero-temperature entropy. Some mean-field
treatments are discussed in Sec. VE 3 and a competing
crystal-like phase is identified. In Sec. V E 7 we introduce

fe”%'on;c v?rlable_s due_ltl tc; the Opertat(?rrrs]., "} Whlclht.the . FIG. 1. Crystal of resonating hexagotmarked with Q on the
residual entropy IS quite transparent. IS Tormulation ISkagome lattice. Labelsa=0,2,4,6 correspond to the possible reso-

r_eminiSC(_-:‘nt of the/, gauge theory in Ref_. 21. The last sec- nance loopL,, around each hexagon according to Table I.
tion (VI) is devoted to numerical calculations on the kagome

w model. later, Singh and Huéeerformed a series expansion about an
Ising limit and came to the same conclusion about the ab-
Il. SOME RESULTS ON THE KAGOME HEISENBERG sence of magnetic LRO.
ANTIFERROMAGNET Although the classical model has no &ld. RO atT=0,

In this section we review a few results concerning the'[he absepge of such an order in the sblpase IS not com-

Heisenberg model on the kagome lattice. plett_aly trivial because quantum fluctuations c_ould select a
particular type of ground state. Sach8lshowed in the con-

text of a largeN expansion that for a large enough value of

the “spin,” a Neel LRO sets infthe so-calledy/3x /3 struc-

The classical kagome antiferromagnet attracted interestire).

because of its unusual low-temperature properties. These In 1993 Leung and Els@pushed exact diagonalizations

properties are related to the existence of a local and continue 36 spins and confirmed the absence 0ENeRO. They

ous degeneracy. Indeed, any spin configuration, that has aso studied four-spin correlatioridimer-dimey to investi-

vanishing total magnetizatio,+S,+S;=0 on every tri-  gate the issue of a possible valence-bond cry&ialspin-

angle, minimizes the Heisenberg energy. Countitgnar  Peierls, or bond-ordergghase made of resonating hexagons

ground statesamounts to finding the number of ways one (see Fig. 1 They found very weak correlations and sug-

can putA, B, andC on the lattice so that each triangle has gested the existence of a liquid phateey could not, how-

spins along the three different orientations. This already repever, definitely rule out the possibility of a very weak crys-

resents an extensive entrafdy2® In a given planar ground talline LRO ordej. Nakamura and Miyashita did Monte

state, one can look for closed loops of type- B—A—B— Carlo simulations includindN=36 andN= 72 spins, which

. Because, on kagome, such a loop has o@iyype  showed no kind of spin or dimer ordering downTe=0.2J

neighbors, rotating the spins of this loop around thaxis  (Ref. 29 but found a low-temperature peak in the specific

costs no energy and gives newonplanar ground states. heat.

Chalkeret al2” showed that all ground states can be obtained On the analytical side, Sachdegeneralized the S(@)

by repeated introduction of such distortions into the differentnodel to an Sp(R) symmetry and worked out a large-

parent planar staté& At low temperature this classical spin approach based on bosonic representations. He found a quan-

system has no magnetic long-range ordd?O) but exhibits ~ tum ordered phase with no broken symmetries and uncon-

divergingnematiccorrelations when the temperature goes tofined bosonic spinons. However, this result does not directly

zero: although spin-spin correlations are short ranged, thexplair® the huge density of low-energy singlet states that

planes defined by the three spins of a triangle are correlategias observed numerically and that we discuss below.

at long distances. This phenomenon is a manifestation of

“order by disorder”: thermal fluctuations select ground C. Low-energy singlet states

states with the largest number of soft modes and these are the |13

planar ground states. '

A. Classical degeneracy

Lecheminantt al'® and Waldtmanret al* calculated a

large number of low-energy eigenstates for finite kagome
clusters up to 36 sites. These results pointed to a large “re-
sidual” entropy at low temperatures. From their data the re-
It has been known for some time that the spilkagome  sidual entropy per site can be estimated tospe 0.2 In(2).
Heisenberg antiferromagnet has noeN&RO at zero tem- This number was obtained by counting the number of eigen-
perature. Early spin-wave calculations by Zeng and Elserstates in a finit(and nonextensiyeenergy window above
indicated that magnetic order disappears when going fronthe ground state. This number was found to scale-as'
the triangular antiferromagnet to the kagome model. Thisvith @=1.15. The width of this energy window is expected
was supported by numerical calculations of spin-spin correto modify numerical prefactots but nota which is directly
lations in finite kagome clusters up to 21 siteBwo years related to the entropy per sisg=In(a).

B. Absence of Nel long-range order
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D. Specific heat T T

The entropy change between zero and infinite temperature 1000
can be extracted from the specific heg{T). The first high-
temperaturéHT) series expansion for the kagome antiferro-
magnet was carried out by Elstner and YodRghis ap- 100
proach showed a huge entropy deficit of about 40%:
J0¢,(T)/TdT=0.6In(2). However, this direct evaluation of 10
the specific heat from the HT series is not accurate at low 1000
temperatures and they concluded the possibility of a low-
temperature peak in the specific heat. A quantum Monte
Carlo simulation by Nakamura and MiyasHitalso found a
low-temperature peak. Such a peak was also found by a deci-
mation calculatiort? A recent exact diagonalization work by
Sindzingre et al3? also found such a peak in a 36-sites
sample. An improved method of calculating(T) from 10
high-temperature series expansion, which is quantitatively 12 18 24 30 36 42 48
accurate down to zero temperature in most frustrated N
magnets® shows that about 20% of the total entropy is still
missing at very low temperaturéjn agreement with exact
diagonalizations data.
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FIG. 2. Kagome Heisenberg antiferromagnet diagonalized in the
first-neighbor RVB space. An exponential number of eigenstates is
observed in the energy windoWE,,Ey+ 8], where E, is the
ground-state energy. The results for two value$ afe shown. The
E. Residual entropy full lines are quadratic least-square fits to the dataNer18. The

If a system has a number of states growing exponentiallfefinition of Jis such that{== S S; .

(with the system sizein a non-extensive energy window = i
above the ground state, it has an extensive residual entropy Bint is to understand whether valence bonds beyond first

zero temperature. In such a case, although the ground std#€ighPors should be included or not in the Hilbert space
can be unique on finite systems, it is, in fact, exponentiallyf© get(qualitatively the right physics. We will only partially
degenerate in the thermodynamic se¥fs®ne can construct gddress this in this paper. This first-neighbor RVB limit

some simple models with an extensive residual entidpy 'S the simplest subspace_ that has an gxponential number
Ising antiferromagnet on the triangular lattice for instance Of States that could explain the proliferation of low-energy

but it is usually lifted by almost any infinitesimally small Singlets observed numerically. In addition, this subspace
perturbation. An extensive entropy &0 is not a generic Provides a reasonably goqdevarlatlonal energy. Zeng and
situation, but instead requires some fine tunjtwzerg of Elsef and Mambrini and Mil computed the ground-state
all these perturbations. For these reasons we think it is urEn€ray of the Heisenberg Hamiltonian restricted to the first-
likely that the spin} kagome Heisenberg antiferromagnet N€ighbor RVB subspact. For a sample of 36 sites, their
has aT=0 residual entropy. Consider some Hamiltonianfesult (XS-S;)=—0.4218) is 3.8% higher than the exact
H(N)=Ho+NH,;, where H, has an exponential ground 9round-state energy obtairedin the full spin Hilbert space
state degeneracy which is lifted By, . At small\ the spe- (2(S;-Sj;)=—0.4384). Zeng and Elser were able to improve
cific heat may have a low-temperature peak whose entropgignificantly this variational estimate by a simple optimiza-
corresponds to the ground state degenerac§{gf Upon tion of the dimer wave function in the vicinity of each defect
taking thex—0 limit, the temperature of the peak goes to triangle, but without changing the dimension of the Hilbert
zero as well. This is the picture we have in mind for the spin-space. To our knowledge, this “optimized dimerizations ba-
1 kagome antiferromagnet and this paper discusses a poS8is” is the best variational one for the kagome problem. It is

sible scenario in which the role &{, is played by a quantum also worth saying that in the fermionic largeextension of
dimer model(defined as the. model in Sec. V. the Heisenberg model, first-neighbor valence-bond states

arise as degenerate ground states inNheo limit.3® 1/N
corrections will then introduce a dynamics among these
dimerized states. Marston and Zéngsed such a fermionic
Quantum dimer models can provide effective descriptionsSU(N) extension of the Heisenberg model on the kagome
of some magnetically disordered phases of antiferromagnetfattice and found that such N/corrections could favor the
We first wish to motivate the restriction of the spin Hilbert crystal of resonating hexagons mentioned ab@dig. 1).
space to the first-neighbor RVB subspace that has been used A last argument for the first-neighbor RVB approach to
in a number of workd®%%for the kagome problem. This the kagome problem is the fact that the spectra of the Heisen-
space is generated by all valence-bond states where spins drerg model projected into this subspace reproduce a con-
paired into first-neighbor singlefglimers or valence bond tinuum of singlet states as in the case of spectra computed in
Because spin-spin correlations are very short ranged, it ithe full spin Hilbert space. This was first noticed by Mam-
rather natural to consider the ground-state wave functiorini and Mil&®® on samples up to 36 spins and we extended
as a linear superposition of valence-bond states. The cruci#their study to samples up to 48 sites. Figure 2 shows the

F. Resonating valence-bond subspace
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FIG. 3. For each width$ of the energy window we fit the ex- FIG. 4. Specific heat per site of the kagome Heisenberg model
ponential increase of the number of energy levels to estimate theestricted to the first-neighbor RVB subspace. The lowest peak at
zero-temperature entromy (as in Fig. 3. Error bars come from the T/J=3.10 % (N=48) is a finite-size artifact.

uncertainty of the least-square fits.

exponential number of low-energy states in a finite-energyiemperature peak is present at or befow 0.07. It is still
window [Ey,Eq+ 6] above the ground state. We analyzedsize dependent but its entropy roughly corresponds to one-
this exponential proliferation of energy levels as a functionhalf of the total entropy of the modéthe total entropy per

of the system sizand as a function of the energy window. Site of the RVB space i$In(2)], in agreement with the re-
Although we have seven complete spectra uplto48 sites,  Sults of Fig. 4. The similarity between these results and those
the dependence on the width of the energy window makes @btained in the full spin Hilbert space is another support to

difficult to give a precise estimate of the low-temperaturethe RVB approach.
To summarize, we have reviewed several arguments indi-

entropy. For each value af we plot the logarithm of the
number of states in the window as in Fig. 2(l8ast-squane  cating that the unusual low-temperature peak in the specific
fit is performed to extract the leading exponential behavioheat of the kagome antiferromagnet might be explained

whenN—oo. Error bars are obtained in a standard \fz,%lm within the framework of a RVB space. We would like to
principle, this procedure measures the zero-temperature efonclude this section by mentioning that the spihieisen-

tropy provided that/J<N. The result is summarized in Fig. berg model may have a large number of low-energy singlet
states on other lattices made of corner-sharing triangles. This

3. Unfortunately, one cannot use too small valuessdje- >
was observed numericaffyon the frustrated three-leg ladder

cause discretization effects scatter the data whésof the SCTVe A .
same order as the typical level spacing in the smallesshown in Fig. 9. We will come back to that model in Sec.

samples. This is the reason for the increasingly large erro¥ D. In Ref. 42 the squagome lattice was introduced and
bars we obtain whe is below 0.6-0.8] (Fig. 3. However, ~Some low-energy states, reminiscent of the kagome ones,
from these results it appears likely that a significant part ofvere identified in a larg& approach. A decimation method

the total entropy is present at temperatures much lower tha@Pplied to this lattice also predicts a low-temperature peak in
the specific heat of the mod&lA numerical diagonalization

the energy scald. Indeed, the values «f, compatible with
the set of data displayed in Fig. 3 are 0.1I8) study of the Heisenberg antiferromagnet on the Sierpinski
<0.21In(2). Only these values are within the error bars of allgasket* found a low-temperature peak in the specific heat as
estimates froms=0.4J to §=1.2]. well.

Computing the specific heat is another method to look for
a possible resi_dual entropy. In the case _of th_e kagome anti- Ill. DIMER COVERINGS ON LATTICES MADE OF
ferromagnet diagonalized in the full spin Hilbert space a CORNER-SHARING TRIANGLES

low-temperature peak was obsen@das well as in some
experiment on a spif-kagome compountf. From its low Before studying the restriction of the Heisenberg spin

sensitivity to an applied magnetic field, this peak was attrib-model to the valence-bond subspace, we will introduce some
uted (mostly) to nonmagnetic singlet states. In this work we properties of dimer coverings on lattices made of corner-
computed the specific heat of the kagome antiferromagnet isharing trianglesgincluding kagomg A very useful property

the first-neighbor RVB subspace. This calculation is donaliscovered by Elser and Zehis that dimer coverings on
from the spectra obtained by numerical diagonalizations uphese lattices can be put in one-to-one correspondence with
to N=48 sites. The results are shown in Fig. 3. The maxi-configurations of arrow variables. Also, this representation is
mum of C(T) aroundT=0.7J is almost converged to its intimately connected to the existence @$ing-like) pseu-

thermodynamic limit. It corresponds to the onset of short-dospin variable$:
range correlations. For all sample sizes, a large low- The correspondence between dimer coverings on the
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FIG. 7. Kagome lattice(dashed lines and black dotson-
structed as the medial lattice of the hexagoffall lines) lattice.
The locations of the pseudospins are indicated by up spins.

FIG. 5. Arrow representation of a dimer coverings.

kagome lattice andets of arrowsis illustrated in Fig. 5.
Each arrow has two possible directions: it must point toward
the interior of one of the two neighboring triangles. In a
triangle, a dimer connects two sites where the arrows point

inwards. In a defect triangl@vithout any dimer, marked with ree links ofH connecteq to the same site Hf are con-
* in Fig. 5), the three arrows point outwards. Therefore, a,[ne(:ted together. The medial lattice of the hexagonal lattice is

each triangle there is a constraint imposing that the numbetlhe kagome lattice. Sindd is trivalent,K is made of corner-

of incoming arrows is even. sharing t”af?g'es- .

Dimer moves translate very simply in the arrow represen-he)(((;) éissogf'itheeakgsglrfﬁgt?cfiﬁiﬁg F;If;;etltebl de. 10
tation. One can easily verify that*(h) (see Ref. 21 and Ingt]he followin \?ve will useN for the numbper of sites in
Appendix A does nothing but flip the six arrows sitting hich i Igt, th ber of links . Th ber of
around hexagom and that such an operation conserves the which IS equalto the nNUMDET OTTinks . 1he humber o
constraint for all triangles. Any dimer mofreis a product sites mH.W'” be 2N/3, which is equal to the nymbe_r of
o*(hy)o*(h,) . .., wherehy,h,. ... are the hexagons en- triangles inK. The number of plaquettéor face$ in H is

closed in the loops. This operation successively flips all th%evsgijlir:;)e;g?ogglmcgiregfwzsigﬂozplnls'EV:IJ(Iee;,’Vsmri\llggti.orfotcr) the
arrows arounchy,h,, . ... Theresult does not depend on pply

the order in which hexagons are flipped, so tifeoperators Ia;f;cesl-éainld ;’é’)? grlgr(f/BZBNf; Napz:ﬁe_ng wheregis its
obviously commute in this language. genus 9= usg= P

(b) Construct its medial lattice KSites ofK are, by defi-
ition, the centers of the links dfl. The sites sitting on the

] ) ) B. Counting dimer coverings with arrows
A. Medial lattice construction . ) .
h ) I h dosoi The number of dimer coverings of any lattice of tylde
The arrow representauo(ras well as the pseudospin op- (including, for instance, the one-dimensional examples of
eratorso™ and o introduced by Zeng and Elsét—see Ap- Figs. 9 and 1Dis
pendix A can be generalized to all lattices made by corner-
sharing triangles. The kagome case is the simplest example

. . . . = Neim. coverings— N3+, («h)
in two dimension, another being the squagome Iditiceig.

8). The Sierpinski gask&tis an example of fractal structure This result can be obtained with the arrow representation.

of dimension between 1 and 2 also made by corner-sharingach arrow has two possible directions, which givé 2

triangles. states. The fact that there can only be zero or two incoming
(a) Start with a trivalent latticeH, that is a lattice where arrows for each triangle introduces one constraint per tri-

each site has three neighbdfsll lines in Figs. 6—-10. The

hexagonal latticgFig. 7) is the simplest two-dimensional ¢r\ ,—';$

-

~
s %
[l '*

example.

FIG. 6. Medial lattice construction. Starting from a trivalent
lattice (full lines) we construct a lattice whose sitésack dot$ are
centers of the links. The sites of this new lattice are linked together FIG. 8. Squagome lattic@ashed linesas the medial lattice of
(dashed linesto form triangular plaquettes. the octagonal lattice.

1
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A » 4 )(:: +)h A » A

FIG. 9. A frustrated three-spin laddétashed linesobtained as
the medial lattice oftrivalent two-leg ladders.

angle. There arel?/3 triangles but only Rl/3—1 constraints
are really independent, which gives Ed).

The fact that N/3—1 constraints are independent can be
checked with the following argument. We focus on the triva-
lent latticeH on the bond of which the arrows live. First FIG. 11. Transition graph between two dimer coverings. The
transformH into a tree by recursively cutting every bond that bonds are oriented so that all hexagons are clockwise. The loop
does not disconnect the lattice into two parts. The final tree ipasses through four types of triangléa)—(d) (see text
still trivalent so the number of leaves, is related to the
number of verticesV, by L=V+2. Each bond gives two gjgns (—1)*Nex*L/2 are associated with the corner-sharing
leaves when it is cut so tha2 is the number of cuts. One triangle geometr§® The sign of (a|b) would just be
can now set the arrow directions on the leaves. Theré &re (—1)'2 if all the bond dimers were oriented clockwise
such independent arrows. Using the constraints associateglound the loops. Consider the triangles on which a loop
with each vertex, the arrows are then determined on all Oth%asses. We classify these triangles in four typesh( ¢ and
bonds of the tree by progressively going from the Ieaveqj) as follows. Some havivo edges on the looftypesa and
toward the root. It is simple to check that the last constraint, ', Fig. 11 and the others have ontyne (typesb andd).
encountered when rea_chLir;g tQ/(/ez root is automatically satissome arenside the loop(typesa andd) and the others are
fied. From this we obtain'?’=2"2"* dimer configurations, outside(b andc). Triangles of typea give two counterclock-

which is equivalent to Eq(1) since 3/=2N. wise bonds and the—{1) factors cancel. Every triangle of
typeb (c) gives one(resp. twg clockwise bonés) and does
IV. FROM SPINS TO DIMERS: OVERLAP EXPANSION not contribute to the sign. Each triangle of tydegives a

counterclockwise bond and contributes by a facterl( to

e scalar product. Letly be the number of such triangles.

o far we have shown that sig@/b)]=II q0ps

(—1)Na*L2_ Using the arrow representati¢and the associ-

ated constraintone can show that—1)Nd=(—1)Nnex*1,

The argument—not reproduced here for brevity—uses the

fact that the parity of arrows coming out and in of a given
The scalar product of two valence-bond states can beluster of sites is fixed by the number of links and sites in

computed from their transition graffh(loop covering ob- that cluster, and is thus related to the number of hexagons

tained by drawing both dimerizations on the top of eachenclosed by the loop.

othen. We first need a sign convention for valence-bond Rokhsar and Kivelsdfi generalized the scalar product

states. A simple choice is to orient all the bonds so that alpiven by Eq.(2) by giving two arbitrary fugacitiex andy

hexagons are clockwi$e(see Fig. 11 With this choice, the that couple to the number and to the length of the loops:

scalar product of two valence-bond stafas and|b) is

When restricted to the RVB subspace, the Heisenber
model induces a complicated dynamics on valence bond§
This dynamics is intimately related to the nonorthogonality
of these valence-bond states, which we describe below.

A. Scalar product and loops

<a|b>: H [(1/2)|_/271(_1)1+Nhex+|_/2], (2) <a|b>x:Qxa,b:L£[ps[yXL/Z(—l)“NheX“’Z], (3
Loops

where the product runs over nontriviaf length>2) loops  x andy can be considered as formal expansion parameters
in the transition graph cd andb, L is the length of the loop, (x=1/2, y=2 in the physical spik cas@. The choicey
andNpe, is the number of hexagons enclosed by a loop. Foi=2 is usually adopted in the literatré but we will keepy
instance, the loop displayed in Fig. 11 Hég,=3. The fac-  explicit so that other cases may be considered. Wherd

tor (1/2)L/2_1 in Eq (2) is valid on any lattice whereas the the Over|ap matri){)x becomes diagonaL

B. Rokhsar and Kivelson scheme

When restricted to the first-neighbor RVB space, the
Heisenberg Hamiltonian induces a dynamics on valence
bonds. These valence-bond states are not orthogonal, so we
have a generalized eigenvalue problem. Orthogonalized va-

FIG. 10. Another example of chain. lence bond statelg) can be obtained:
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TABLE I. The eight different classes of loops that can surround

|5>=2 (Q, Y2 0) (4)  a hexagon. Including all possible symmetries, we find 32 possible
b loops.L/2 is the number of dimers involved ahg is the tunneling
and the matrix to diagonalize is amplitude(at lowest orderassociated with each loop in a small-
expansion of the Heisenberg model in the RVB spaee text The
Hgfg(x)=<a|H|b)x (5) value for the physical casg=1/x=2 is given.
Loop @ |L/2 ha(z) o | i
=2 (0" aar(@[HID ) (O )y (6)

a’'b’

- > — 3 = — -
where H is the Heisenberg Hamiltoniart{=%,S-S;. 3 Syz” = —3/4 + +

From now we will only deal withorthogonalizedvalence-
bond states|a) but we will drop the tilde for clarity.
H*f(x=1/2) was diagonalized numerically to obtain the re-
sults of Fig. 2 and 4see also Refs. 6 and B .#(x>0) is
nonlocal and many dimers can hop simultaneously to quite
different configurations. However, singe- 3 <1, the tunnel-

ing probability for such events decreases exponentially with
the loop length. Up to ordex", H®(x) is local and only
contains terms witl=n dimers. Following Rokhsar and Kiv-
elson’s work on the square lattit® Zeng and Elsér® con-
sidered the smaklt-expansion ofH ®" on the kagome lattice
up to orderx®. Up to a constant we have

4| yatd-y)=1/4 | + | + | +

4 | yz*'d-y)=1/4 | + | + | -

4 | yx*d-y)=1/4 | + |+ | +

yx3(2y — 5) = —1/16| + - |+

Hef(x)=— hZ h(X)|L L +H.c+O(x%)  (7)
- 5 |yzd(2y —5)=-1/16| + | - | -
where the sum o runs over all hexagons, the sum an
runs over all the loops enclosing a that hexagon. The tunnel-
ing amplitudesh(x) are given in Table I. These results re-
duce to Zeng and Elsef'svheny= 1/x= 2. Notice that other
terms of orde® exist and involve six-dimer moves around
two hexagons.

Equation(7) can be obtained from the scalar product for-
mula. The latter is valid for any lattick made of corner-
sharing trianglegsee Sec. Il A and Eq.(7) can be general-
ized to these lattices. Now hexagons are replaced by
plaguettes of latticél. Consider a loopx encircling a single  degeneracy and its elementary excitations are pairs of
plaquette. It has a length and enclosed; triangles. The gapped Ising vorticeévisons. Here, we search for a model

5 lyz5(2y —5)=-1/16] + | - | +

HEAHab AR

6 | y2%(6-3y)=0 + |+ | +

amplitudeh (x) for that dimer move is that, as Eq(9), is amenable to an analytical treatment and
. L L that can capture some essential features of the spin model.
ho(X)=3Y(=X)" (L =yNp) + O(Xpin), 8 The first step in treating the frustration inherent to the

Heisenberg model on the kagome lattice is to introduce non-

where L, (equal to 6 for kagomeis the size of the oSS _
trivial signsin the dimer resonance loops.

plaquettes oH. Unlike the squar€ or the triangular lattice
case?®no sign convention for the dimer coverings can turn
the signs of the amplitudes, tall equal A. Definition of p(h)

We choose to keep only the sign of the leading tehps

V. QUANTUM DIMER HAMILTONIAN of the dimer overlap expansion for the Heisenberg model.

In Ref. 21 we introduced a solvable model: This leads to the definition of an operajoh) at each pseu-
dospin locatiorh (hexagon centers in the kagome gase
Ho==2 [La)(Lal+He==2 o*(h), (9 2
' u(h)=> e(a)|L){L,|+H.c. (10)
where the pseudospin operater§h) are the kinetic-energy a=1

terms defined in Table(see also Appendix A This model is

obtained by setting,=1 in Eq. (7). We showed that Eq.  Where

(9) is completely solvable and is the prototype of the RVB

dimer liquid. It has a unique ground stdte to a topological e(a)=(—1)‘ength/2 (12)
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FIG. 13. Two possible states of a pair of triangles.

are not adjacent, the sigrg$A) and e(B) are unaffected by
the action ofu(B) and w(A), respectively, angw(A) and
FIG. 12. The position of incoming arrows on site§ 2, . . ., n(B) commute. For two neighboring hexagohsindB, the
defines the possible dimer movieill and dashed linksaround the ~ action of u(A) affects the sigre(B) and conversely. There
hexagon. The arrows at sites 1,2. ,6 are oritted for clarity; they ~ are two types of arrow configuration shared by the neighbor-
take opposite directions in the dimerizations pictured by full anding hexagonsA and B, as shown in Figs. 18) and 13b).
dashed dimers, respectively. The arrows at21, ..., are un- Both configurations have an odd number of outgoing arrows
changed during this dimer move. among the four external links, which will be flipped by the
successive actions @f(A) andw(B). One of the signg(A)
and Lengthg) is the length of the loopr. The action of and e(B) will therefore be changed by the action of the
w(h) only differs from the pseudospin flig*(h) by a sign:  neighboringu, but not the other. This means that upon act-
u(h)|D)y==c*(h)|D). This sign depends on the length of ing with x(A) and x(B), the sign of the final configuration
the admissible loop 4t in state|D), as indicated in Table I. depends on the order we applied the two operators, and we
With this definition, if |c) is a (nonorthogonalizeddimer  find that on any configuratiop(A) u(B) = — u(B) u(A).
configuration, we havéc|u(h)|c)=0 for any hexagorh.
This can be used to define the signs of the matrix elements of 2. Operator 4
« independently of the orientation of the dimers. _ . . .
As for o, u can be simply expressed in terms of the Another choice for the signs of the tunneling amplitudes

arrow representation introduced in Sec. Ill. Let,1,2. ,6 be  tums out to be very useful. Consider theoperators defined

the sites of hexagoh and 1,2, ... 6 be the sites of the by

“star” surrounding this hexagofsee Fig. 12 The length of

the admissible loojr, aroundh is related to the state of the 32 o

arrows on 1,2, ... ,6 in the following way. If the arrow at w(h)= > e(a)|L )L, +H.c., (13
site i’ is pointing towardh, it shares a dimer with a site a=1

belonging to the hexagon anrd, will pass through’ andj.
Let ny be the number of outgoing arrows. From this it is where the signg(«) are given in the last column of Table |.
clear that the length of that loop will be Length) =12  contrary toe(a), €(a) counts the parity of the number of

—Noyt- TO summarize, the operatp(h) defined in Eq. 10 gytgoing arrows only on one-half of the sites of the star:
flips the arrows of sites 1,2. . ,6 andmultiplies the configu- 1/ 37 and 5. Using the arrow representation and similar

. . 9_ .
ration by a sigff: arguments as above, one can show {haju operators anti-
e(h)=(—1)"ouln’2 (12) commute when acting on nearest-neighbor hexag@s

commute otherwise. Most interestingly,and u realize two

The operatorg:. can be explicitly written with the help of . t th laebra that te with h other:
o% and o™ operators. Finding such an expression is not com&OPIE€S ot the same aigebra that commute with €ach other.

pletely obvious sinces” are nonlocal and depend on the

reference configuration, whereasare local and independent vV h,h'[u(h),z(h’)]=0. (14)
of any reference state. The expression is derived in Ap-
pendix B.

The 1 (and ) operators have simple commutation rela-
tions with the pseudospin operatar$ introduced by Zong
and ElserZE). By definition, theu operators can be written

1. Operator p asu(h)=e€(h)o*(h), wheree(h) is diagonal operator in the

The . operators have the remarkable propertybfan- ~ dimer basis. Because” operators are also diagonal in that
ticommuting when they operate on nearest-neighbor hexdiasis they commute with any and we simply have
gons but(2) commuting otherwise. This property is not ob- #(h)a“(h)=—0c*(h)u(h) and [u(h),e*(h")]=0 for h
vious when looking at Eq.(10) and is most easily #h’ (see Appendix A for the commutation rules @f and
demonstrated with the help of the arrow representations. AsZ operators The same result holds fqr. In Ref. 21 we
mentioned previously, the effect @f(h) on an arrow con- identified o*(h) as the operator that creatés destroys an
figuration is to flip the arrows around hexagbrand multi-  Ising vortex(vison) on hexagorh and a nonzero expectation
ply it by a signe(h) = (—1)"ouM/2 Therefore, the actions of value (o?) was interpreted as the signature of confinement
m(A) and u(B) commute up to a sign. If hexagoAsandB  and vison condensation.

B. Commutation rules

214413-8
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(16)

i j 7j j 7 ( j i < j 7 Ténzll;[nﬂm—l, T§n+1:|SHnIL2|—1-
FIG. 14. The eight possible dimer moves around a squar

plaquette of the frustrated ladder shown in Fig. 9. The signs of th
corresponding amplitudes in the model are indicated.

Using the(anticommutation relations of. and . it is easy

%o check thatr* and 7# anticommute. Thew () operators
%nly involve the Ising pseudospins on ev@ud sites:

:Uv2n:7)2(n1 M2n:7>2(n+1

C. Hamiltonian

The main results of this paper concern the following

quantum dimer model: Hont1= TonToneze Hont1=Toneaones: (1)
And the u Hamiltonian on the chain is now simply
== 2 u(h), (15
" H,u:_; %n_; Tén”én-*—Z (18

where theu obey the commutation rules described in the

preceding section. We studied this model both numericallyvhich we recognize to be that of a ferromagnetic Ising chain
and analytically. Numerically we diagonalized it on systemsin transverse field at its critical point. This model can be
up to 144 kagome site@8 hexagons The results are pre- solved by a Jordan-Wigner transformatimeduces to free
sented in Sec. VI. The most striking feature of the spectruniermions. Because the Ising chain is at its critical point, the
is that all energy levels have a huge extensive degeneracy éfmer spectrum is gapless and supports linearly dispersive
order 2'¢?, where, in the kagome casbl,=N/3 is the excitations at small momentum. In additidiy; ;) correla-
number of hexagons. The degeneracy of the spectrum has #ens decay algebraically with distance. The exponential de-
origin in the existence of the set of operatargh), which ~ 9eneracy of{, is now tran_sparent: only one-half of the Ising
commute withx, and therefore witt#,, . The spectrum is  SPNS (located on even sitgsappear to be coupled by the
organized in 2 sectors labeled by the eigenvalues of khe Hamiltonian. However, this entropy has a subtle origin: To

independent commuting operators, which can be constructefffité the « model only in terms of the /2 “coupled
~ . . . egrees of freedorfin order to get rid of the entropyone
from w, as explained in Sec. VE5. The eigenvalues are,

identical in all the &' sectors. Another interesting feature is as to use operatorsg,) which are nonlocal for the original

the existence of quantities that commute both withand dimers [Sei E~q.(;6)]. Oln thf] otger han;j}, therehare local
with 2, called in the following integrals of motion. They are operators(the 1 themselvesthat do not change the energy

i ~ and that create localized zero-energy excitations.
constructed from products ofc (or alternatively u) on We can make a comparison with another quasi-one-

straight I?nes c_irawn on t_he triangular lattice of pseudospinsgimensional model with extensive degeneracy: the $pin-
as explained in Appendix E. The spectrdapendson the  peisenberg model defined on a chain of coupled tetratedra.
values of these integrals of motion. In that model some lIsing-like degrees of freedgm +1

Using operatorsu, the dimer-dimer correlations in the (spin chirality do not appear in the Hamiltonian of the low-
model can be showiiSec. V E 6 and Appendix Dto be  energy sector and the model has an extensive zero-
short ranged. temperature entropy. This situation seems analogous ta the
model: 75, , play the role ofy. However, the important
difference is that,,, ; are nonlocal in terms of the original
. : . ... .dimers, whereag are local in terms of the original spins.
Before discussing the kagome case in more detail, it is We will see in the following sections that themodel on
interesting to look at thex model on the one-dimensional . o

. . S . the kagome lattice also has this important property that the
Iattlc_e dlsplayed in Fig. 9. As on any Iattlce_ made of Comer'“coupled” Ising degrees of freedom are nonlocal in terms of
Z?ﬁaer;zgttc;:?nngrkrar?évtggngﬁde?: s(:igg$?i)(]jgrlg<aci?s;?:);ga 'il;]he dimers. WQ are not aware of any other interacting quantum
Fig. 14. Because it is one-dimensional. it is solvable and medel exhibiting such kind of ex;enswe degeneracu_as. There

A ) ' ight be, however an analogy with other systems with local-

will show that its spectrum exactly maps to the spectrum o zed excitations such as in Aharonov-Bohm c&ges flat-
thg_transvgrse—field Ising chain at the critical fie{quantum band systems in general. There, the extensive degeneracy is
critical poind. due to destructive interferences that prevent excitations from
hopping on the lattice and thus gaining kinetic energy by
delocalization. This stresses again the role of the signs in the

The mapping to the transverse-field Ising chain can beg, operators.
realized through a representation of the algebra by some

D. One-dimensionalp-model

1. Transverse-field Ising chain

pseudospin operators’ and 7* defined by

7)2(n::“2na 7)2<n+1_:U~2n

2. Order parameter

The mapping to the transverse field-Ising chain suggests
to introduce a different coupling fqg on odd and even sites,

214413-9
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right dimension of the dimer space, that i@ L. There
H(I)= _F; MZn_; Man+1 (19 exists an exact mapping between the fermionic states and the
dimer states, but we do not insist on it here. We suppose
periodic boundary conditions and taki even.
=-T> 7.>2<n_2 T2 Thnso (20) Let us introduce a pair of creation/annihilation fermionic
n n operatorsc; ,c;r ateach sitg =1, ... Ny. They are equiva-

so thatl" is the strength of the transverse field. It is known €Mt _ tOT a par 20f~l;/lajorana fermionsy; = (c/+¢;), ¥
that the ground state has%,)# (75,7, except at the = —i(¢j—¢;), ¥j=7j=1. We construct operatoys; as fol-
critical pointI'=1. In other wordsy have different expec- 10WS:

tation values on odd and even sites fo¥ 1. This state [ ~

#1) has long-rangedu;u;) correlations and is a crystal in M=%+ KT e (22)
the (u) variables with a diverging structure fact&®(w) so that

=3 ,(—1)"(mopmn)- Itis interesting to remark that from the N N

Ising point of view the natural order parameter is the “mag- o 2"5 . Z"S 09
netization” (75,), which is nonzero for thd& <1 phase but =R |j=1 YivYis1- (22

vanishes fol’=1. This order parameter is nonlocal in terms . .

of the dimers[see Eq.(16)]. However, this does not mean I_t IS stralgh_tforward to CheCk that two operatqrs, "’?”‘_
that for <1 the dimer system spontaneously breaks somdicommute if they are nelghgors and commute~otherW|se, the
hidden Ising symmetry. There is no such Ising symmetry insame is valid for operatorg;, while u; and u; always

the dimer problem and the spurioids redundancy was in- Commute. - S N
troduced in the Ising representation: reversingraljives, in We have not yet specified the periodicity conditions on
fact, thesamephysical dimer state, as can be seen from EqOPeratorsy;. Let us introduce two extra kinetic operators,
(17). In the dimer language, this is a consequence of thgt(u) and u(d), which move the dimers around the two
fact that reversing all the arrows twice is proportional to theedges(or Nys-gones of the chain

identity.

2Nps™1

w(a)= 21 e(a)(|L)(L,/+H.c), a=u.d

3. Heisenberg model on a frustrated ladder

The spin; Heisenberg model on the three-spin ladderyhere « runs over 2! possible loops of even length
shown in Fig. 9 has been studied by Waldtmatal™ They  around the edge ané(a)=(—1)-"9"@2 They mutually

considered &-J’ model where the horizontal couplingds  commute and anticommute with all, j=1,...Nys. Their

and the diagonal on@round square plaquetjés J'. From  producty(u) w(d) commutes with the Hamiltonian and it is
spins and density matrix renormalization grald@MRG) for  of motion are the products qf; on the even(odd sites,
N=<120 sping it appears that the system may be critical in , — ;.. un 1 (we=topta - - - i ). A careful
the region 0.5J'/J=<1.25 (vanishing spin gapand that a o P ¢

g 9 spin g analysis shows thajouew(u)u(d)=(—1)Ned? on any

Spin gap opens f9|:] ”21'2.5.' the_ |ntere§tlngly, they dimer state. This constraint on physical states shows that the
showed that af=J’ the specific heat is quantitatively very dimension of the Hilbert space i'®"1. Suppose now we

similar to that of the kagome antlfer_romagnet and exhibits e in the sector with (W) u(d)=1. Then, mome
low-temperature peak. The finite-size spectra also show a Nyd2 : o
. . =—(=1)"¢uqpuy . .. un , and using the definition from
large density of singlet states above the ground stake ; ps R i
though probably not exponential iN). These similarities Eq..(Z}) we obtain thaty; yn 1= —1, which implies anti-
suggest that the corner-sharing triangle geometry is an imperiodic boundary conditions on the Majorana fermions. In
portant ingredient to generate a large amount of low-energ$he second sectog(u) u(d)=—1, the Majorana fermions
singlet excitations and it would be interesting to investigatehave periodic boundary conditions. _
the possible relation between this three-spin ladder angithe ~ We have now all that we need to solve mo¢22). First,
model. all the spectrum is degenerat&# times, since all theéNps
Majorana fermion§yj commute with the Hamiltonian. Then,
4. Exact spectrum via fermion representation the Hamiltonian(22) can be diagonalized after a Fourier

In the mapping to the transverse field-Ising chain, welransformation,
have neglected subtleties associated with boundary condi-
tions as well as constraints on the physical space of dimer H#=22 SINKy Vi (23
coverings. Indeed, the latter has dimensidf2! whereas k
we used a representation of dimensid¥es2 2V, We shall  where the sum is over momeria 2mn/Nps, with n being
now present the full solution of the model on the chain, an integer in the periodic sector a half-odd integer in the
using fermionic variables. antiperiodic sector, &n<Nys. The operatorsy, with 0<k
Since we are interested mainly in the spectrum, we will<z (—7<k<0) could be interpreted as annihilati¢cre-
realize the algebra ofi; operators in a space that has theation) operators. Note that, in order to ensure the right com-
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mutation relations between creators and annihilators, we desimultaneously diagonalized so that we can consider an
fined the Fourier modes ag=1/\2N,=,e"y,. The zero  eigenstaté ) of thesey(c):

modesk=0,7 need a separate treatment, but they do not

appear in the Hamiltonian. After normal ordering, w(C)|o)=n(c)| ), m(c)==*1. (27

In addition, we may define some operats(f) by
H,=4 > |sinkly_yw—2 X |sink]. (24 ~
e e s(h)=u(h) (). (28)

'They are diagonal in the dimer basis and commute with each
other. We can projecti,) onto the subspace, whesgc)

The vacuum energy is easily calculated in the two sectors

- 2n+1) 2 . : :
() _ -7 _ = p(c) for any sitece C:
B)=-2 2 sin— SN
1+ n(c)s(c)
Npg2- 1 ly)=11 (—)|¢o>, (29
o p S g 2m 2 - cec 2
=— sin—— = — .
° n=1 Nps tan(m/Npy) which, by Eq.(27), is simply
Since E{ '<E{", the ground state of the dimer problem 1+ u(c)

has energyE,=E{ )= —2/sin@/N,9. In the thermody- ly)=11 (T)W/O). (30)

ceC

namic limit E/N s — 2/7r. The first-excited state is & ;
the rest of the Spectrum: can be constrqctgd by making Now we consider the states generated by the action of
particle-hole excitations over the two fermionic vacua, ac-

) . . : wu(aeA) and u(beB) on|y). A basis can be labeled by
cprdmg to Eq.(24).. The nu'merlcal spectra, obtalned. in the 2N,43 Ising variablesr= =1 andri= =1 as follows:
dimer representation, are in complete agreement with those P
constructed from Eq(24). In the thermodynamic limit, the
gap vanishes and the excitation spectrumypfis linear at |72, 78y =

1/2(1+ 7~
[T n(ayr2trm
small momentum. acA

11 (D)2 [y,
(31)

E. Kagome case As we will now show, this subspace is stable under the action
of any u. This is obvious concerning the operatpréocated
on sublatticesA andB. On these sites we may defifieon-

As we did in the one-dimensional case, it is natural todiagonal 7 operators which reverse the value df at the
represent the: operators with Ising variables. The simplest corresponding site. With this definition, we have
representation uses one Ising variabté=+1 at each
hexagon: u(a)=ry, (32

1. Degenerate representation

3 3 z z Z
~ :U’(b) = 7)l;TaTa’ Tar- (33)

My = T?H Tf-%—g v M= T?H T?—el ) (26) . 2
=1 =1 The 741, 7, comes from the anticommutation pfb) with
where the three unit vectoesare at 120 deg and relate a site its three neighborsg, a’, anda”) belonging toA when

to three of its neighbors on the triangular lattice. It is easy t@cting on a state such as HJ). Now we act with au(c)
check that this representation indeed realizesitiandz) ~ ©"|7a:7b)- Upon moving(c) to the right throughy:(a)
algebra. One can, in fact, expregsin terms of ZE pseu- and u(b), the state picks a signgr,, 7, 7,7, 7, Where
dospin operators and find similar(although more compli- &.a’, ... b” are the six neighbors af Then we use the fact
cated relations(see Appendix B Notice, in particular, that thatxu(c)|#1)=|y1) so that we finally get the following rep-
7 anticommutes withe and % on the same hexagon but "€Sentation:

commutes with all the others, exactly a$ do. This repre-

sentation hagapproximately the correct size of the Hilbert p@)=m,,
space 2Nr9), but it does not show how many Ising vari- w27 2
ables decouple in this model, that is how large is, the degen- w(B) =Ty Ta Ty Tans

eracy(entropy in this model. 2 s L,
1(C) = TATo  Ton Ty Ty T - (34)
2. Three-sublattice representation . . L
This representation is independent g{c). As a conse-

One can use a different representation for ttie on a  quence, the spectrum of any Hamiltonian made outuof
smaller subspace, therefore removing part of the degeneraqyperatorgsuch asi,,) will be at least dod3.fold degenerate.
Consider a decompOSition of the triangular lattice itttree As we show |ater’ this degeneracy iS, in fact, much |arger
sublatticesA,B, and C. All the u(c) with ce C commute  ~2Ned? but this already exhibits an extensive residual en-
with each otheras well as with all thew). They can be tropy at zero temperature.
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3. Mean-field approximation
The representation of Eq34) suggests a simple varia-
tional (or mean-fielgl approximation in which the system is
in a tensor product of single-site wavefunction¥ )
=®';'943(|\PA>®|\PB>). All the sitesae A are in the same
state as well as all thee B:

W ) =cog 0/2)[ 1) +sin(6/2)] 1), (35)

[Wg)=cog ¢/2)|1)+sin(¢/2)] ] ). (36)

We have two variational parametefisand ¢» and the expec-
tation value of the energy per hexagon is

FIG. 15. Mean-field phase diagram of the model on the
kagome lattice with three different couplinas,, A\g, and\c on
three sublattices. Because the mean-field approximation breaks the

(1a)=sin(6) symmetry which exchanges B andC, the transition linegsdashed
a ' do not precisely match the symmetry axis. Such symmetry should
() =cog 0)3sin( ) (37) hold in the real system and was restored here for clarity. Transitions

are first order.
_ 3 3
(1) =cog ) cos )", merical results presented in Sec. VI indeed show that, at least

at short distancegu (X correlations match the three-

E/Nps= — 3 ({pa) + )+ (11c)). 3 iera e )
Minimizing E we get
4. Three-sublattice © model

(1a)=0.2979; (up)=0.3104; (uc)=0.7091 (39 As for the one-dimensional model, we can generalize the

kagome u model by letting the couplings be different on

E/Nps=—0.4391. (400 sublatticesA, B, andC:

Becausg u,) # {mp) #{1¢), this state breaks the translation

symmetry. It has some crystalline order with respect to the H=—Np2, Ma—ABD Mp—Acr Me 41

(u) variables. Notice, however, that such a stateas a ach beB ceC

dimer crystal[see Eq.(D9)], since it can be chosen to have znq we focus OMp+Ag+Ac=1 and A, \g,Ac=0. We

zero dimer-dimer correlations beyond a few lattice spacingsgetermined the ground state of the model within the mean-

From the numerical diagonalizations, we estimate the exagfe|q approximation of Eqg37) and(38). The result is sche-

ground-state energy to li&/Np=—0.44+0.02(see Sec. VI matically shown in Fig. 1%a qualitatively similar phase dia-

and Fig. 18, which agrees with the variational result within gram is obtained with the degenerate representatidre

error bars. Itis interesting to compare these energies with thgptain three phases. Whew, dominates, the ground state

energy that one gets with a single-site wave funl%is())n deriveqlagp= 712, (72 =0, and(7%)#0. When\y is the strongest,

from the translation invariant representation of . The _ z 7y _

later approximation giveE/NpszriO.3248, which is signifi- we have¢—w/2,z(ra>¢0, a”‘i'<Tb>_°' Close to the_)\_c
peint, we have(r5)#0 and(7f)# 0. Along the transition

cantly higher. Two other mean-field states can be consider({)nes (dashed line in Fig. 1Ean expectation valugr) jumps

from Bg. (26). On can use three different single-spin Statesfrom zero to a finite value so that the transitions are first
|, [¥g), and| W) on three sublattices. Minimizing en- = e
order in this approximation.

ergy with respect to the three related angles we Bl The mean-field prediction for the topology of the phase

=~ 1/3. The corresponding variational state simply haSdiagram appears to be quite plausible. If there are indeed

(pa)=1, (pp)=(pc)=0. Enlargmg the unit ceII' does not three phases, then, by symmetry, the point of intekest
help to lower energy. Indeed, using four sublattices leads to "~ " . S .

_ - =\g=A\¢ is the end point of three transition lines. It is not
an even worse energy E(N,;=—1/4, (u,)=1 and

(u )=0). The fact that the degenerate representatio clear whether the discontinuous character of these transitions
b,c,d/ — .

n . . . .
gives rather bad energies can be explained from the fact thay 2" art'f?CL of the .mean-fleld aﬂpr?xmatg)n OL a robust
in such states the Ising degrees of freedomh ¢r 7%) are Property. If the transitions are really first order, then fhe
completely uncorrelated on different sitds; )= (r)(r) model spontaneously breaks the translation invariance and
17] i/\Tj/

The situation is different in a representation such as(84). r_eahz_es a'crysta! n the. 'var|ables. It may also be thmé“.
L . . =\g=A\c Is a critical point. Although we have no definite
In that case nontrivial nearest-neighbor correlations are USi his i fh ical li
resent even in simple tensor-product states such as the ofgg cusion on this issue, some of the numerica res{s_ S
\F/)ve considered cgpnblhty) presented in Sec. VI suggest a critical point.

Although the good variational energy given in Eg0)
does not prove that the system indeed spontaneously breaks

the translation symmetry, it indicates that flaenodel on the The constructions above use at mbst/3 commutingu
kagome lattice is not very far from such a pha$&he nu-  operators, but this is not the maximum numbérof mutu-

5. Nondegenerate representation
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more to solve the model, since the Hamiltonid®) cannot
be reduced to a quadratic form in fermions. However, it is
still useful in gaining some insight about the model, for ex-
ample, it helps in understanding the extensive degeneracy of
the spectrum. In particular, it provides an argument that
shows that the degeneracy~2Nr¢ not only on the kagome
lattice but also on any lattice made of corner-sharing tri-
angles provided the lattice of triangle$attice H of Sec.
Il A) is bipartite.

We associate to each vertex of the kagome lattice a fer-
mionic occupation number 0 or 1. For a given dimer con-
figuration, the corresponding fermion configuration is given

C, and D. The open dots represent the spins entering a bow-ti ; . : ; ;
operator centered on th# sublattice. The black dots and the starsEﬁr:]setzllg\ivingrnggg' ('Tndifti(:rt;Ir?:r?é?eza?heé:zeirsogggp(;iitrlf?gr

correspond to the positions of spins and centers of the bow-tie Opéonnecting the sites with equal fermion numbers, 00 or 11

f;f:ors’ respectively, forming a set of mutually commuiting OperaThere is a constraint on the parity of the number of fermions
on each triangle, alternating on adjacent triangles, for ex-
, ~ ample, triangles pointing to the right in Fig. 5 have odd
ally commuting operators made outpf In fact, there are of -, hers of fermions, and those pointing to the left have even
the order ofN.=N,J2 Ising degrees of freedom that de- , mper of fermions. It is not difficult to see that the arrow
couple, as can be seen from the following argument. Dividg g igpies and the occupation number variables are essentially
the lattice infour sublatticesA,B,C,D as shown in Fig. 16.  the same and that their constraints are of the same nature. In
The “spins” u(h) on theA sublattice mutually commute. In  particular, the counting of the degrees of freedom is similar

addition, one can consider the “bow-tie” operatois for arrows and fermions, the constraint for each triangle
=72(1)(2)(3)1(4), centered on sites of thg sublattice eliminating one spurious _degrees of_ freedom_. _
and involving neighboring “spins”of theC and D sublat- On each kagome site there is a pair of creation/
tices. TheseN,J4 bow-tie operators commute mutually and @nnihilation fermionic operators; ,c; . As explained above, -
with the operatorgu(h) from the A sublattice, which gives the d'm?f space Is equwalept to the fermion FOCk. Space, W't.h
us an ensemble dfl,y2 commuting operator¥ These con- constraints on the occupation number on each triangle. As in

L~ = o the case of the chain, we transform the fermions into a pair
served quantitiesyf andT) can be used to eliminate degrees f Mai fermionsy: — (c1+¢) % ——i(c—c). Th
of freedom on the two sublattices in a similar way as we did®f Majorana fermions;y;=(c; +¢;), ¥;=—i(c; —¢;). The

FIG. 16. Dividing the triangular lattice in four sublattics B,

for the three-sublattice representation. However, now, on&/9€Pra of operatorg(h) can be realized now by using only
cannot avoid obtaining a nonlocal representation of ghe ©Peratorsy;,
algebra in terms of the spins living on ti@&and D sublat- .
tices. The procedure is briefly explained in Appendix. C. :
p y exp pp M(h):|H Y,

6. Arrow and dimer correlations ) )
where the arrow means that the product is orierifed ex-

Using theu and T introduced above, it is possible to ample, it starts at the leftmost site of the hexagon and runs
demonstratésee Appendix Dthat dimer-dimer correlations  clockwise. With this representation the model contains six
vanish identically beyond a few lattice spacings in any statdermionic creation or annihilation operators. Since two adja-
that is an eigenstate of all the(ac A) andT(beB). Since  cent hexagons have one kagome site in common, the associ-
the eigenstates of the Hamiltonian can be choosen to batedu operators anticommute. Distapts commute, since
eigenstates of these(ae A) andT(be B), one can choose they are constructed from an even number of fermions, and
a basis of the ground-state manifold where every state is §ach operatorg squares to 1. Similarly, one can construct
dimer liquid The same result was found in Ref. 21 in a _
gapped dimer model. Here, because the ground state mani- ~ T~
fold has a huge dimension, it is likely that some perturba- M(h)z—'ﬂ Vi
tions are able to selecbut of the ground state manifold of
H,) states with some dimer order. Even in such a case weith the product running in the opposite direction to that of
expect dimer-dimer correlations to be very weak in the vi-u. These operators obey the same algebra(@9 and com-
cinity of H,, . mute with the whole set of operatogs The symmetric role

o _ played by operatory; and}j suggests that one-half of the
7. Fermionic representation degrees of freedom are not affected by the action of the

A version of the arrow representation can be given inHamiltonian Eq(15) and, therEfore, that the degeneracy of
terms of fermions. The advantage of such a formulation ighe spectrum is of the order of'®/, _
that signs are naturally included. Unlike the one-dimensional Let us note that operatogs(h) and x(h) leave the con-
case, such a fermionic representation cannot be used angtraints on the occupation numbers invariant, since they
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o . e FIG. 18. Top: Ground-state energy per site. The dotted line is a
240 least-square fit of the data.fch5> 16. Bqttom: energy gap be-
¢ ¢ tween the ground-state multiplet and the first-excited state. The dot-
/ o e ffe . . ted line is a guide to the eye-(e"2"es). When different values are
. « . plotted for the samé\ ¢, they correspond to different shapeee
- S . . Ngs=16 and 24 in Fig. 1)
16,
~ e . . . numerical diagonalizations of the Hamiltonian. For systems
. e e e up toNpe,=Nps= 16 hexagonsN = 48 siteg we diagonalize
it directly in the basis of dimer coveringsshose dimension
* e » 1;;‘ © is 2Nps*1) by using all lattice symmetries. For larger systems

(Nps=20, 24, 28, 3p we diagonalize the Hamiltonian in a
FIG. 17. Finite-size lattices used for the numerical diagonalizaf€Presentation where the extensive degenef@woy to theN,

tions of thex model. Each dot is a hexagon of the kagome lattice.ISiNg quantities that commute with evepy) have been re-

Nps= 5N is indicated. The lattices on the top are compatible with amoved (see Appendix € The diagonalization is performed

three-sublattice structure whereas the otheottom are not. Al separately for each sector defined by the conserved quantities

lattices exceptN,.=10,14,18,16° are compatible with the four- |. For the largest systenNgs=48, N=144) we use a Lanc-

sublattice structure. zos algorithm in this nondegenerate representation to obtain

the first energies and wave functions. Thanks to these numer-

change by 2 the occupation number on each triangle. Moreus symmetries the largest vector size is onlt0°. The

generally, products of on loops that visit each triangle an lattices we used are displayed in Fig. 17.

even number of times also leave the constraints invariant and

their action could be translated in the dimer language. The

most general operator that preserves the constfdiner A. Spectrum

space can be constructed from the productsjyofindy on The ground state energy per hexagon is plotted in Fig. 18.
loops visiting each triangle an even number of times. Thes€&rom this data we can estimate that)=—0.44+=0.02 in
operators are the equivalent of Wilson loops in a gaugehe thermodynamic limit. It is interesting to compare this
theory. Triangles where the constraint is not obeyed can bealue with the energy of a simple 4-problem H=u;
constructed by the action of strings of operators(they  + u,+ w3+ u4 (With periodic boundary condition so that ev-
could be useful for describing dimer configurations with de-ery site is neighbor of the three othgrsvhich has(u)

fects, and therefore to introduce holons or spinoAsd fi-  =—1 in its ground staté® The energy gap between the
nally, the vison creation operator is naturally constructed irground state multiplet and the first-excited state is also
this language as the product efy; on a string. shown in Fig. 18. This quantity probably goes to zero in the

The fermionic representation allows one to study the inthermodynamic limit. Figure 19 shows the gap as a function
tegrals of motion and to prove that they are associated wit®f the ground state energy per hexagon. It appears that the
the closed straight lines on the lattice. In Appendix E, theséamples with the largest gap are those whose energy is sig-
integrals of motion are constructed, and used to build a compificantly lower than the thermodynamic estimatguf=
plete set of quantum numbers for the dimer Hilbert space. —0.44+0.02). This also points to a gapless spectrum in the
limit of large systems.

The dispersion relation of the first-excited states usually
provides some useful insight. However, due to the extensive

Because the nondiagonal matrix elements ofghepera-  degeneracy, this brings no information for themodel be-
tor have different signsit,, is not appropriate for large-scale cause the dispersion relation can be shown to be perfectly
Monte Carlo simulations and, instead, we performed somdat. Let |k) be an eigenstate with momentukrand energy

VI. EXACT DIAGONALIZATIONS OF THE u-MODEL
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FIG. 19. Gap as a function the energy per siteNge>12 (data
of Fig. 18. The line is a guide to the eye. . . o o .

Ey. The new statdk+q)=3.e'9 "y (h)|k) has, by con-

struction, momentunk+q. Becausew commute with?{,,, FIG. 20. Correlations poui)®=(popi)~(po)* in a 48-
|k+q> is still an eigenstate with enerdg;, . This propert;lL is hexagon system. The site 0 is at the center. The radius of the circles

X ) ~ is proportional td{uoui)¢|. Empty circles indicate negative corre-
just a consequence of thg fa_\ct that acting with @&reates a  |5¢ons and the black ones are fmow)°=0
localizedzero-energy excitations.

From these data we propose two possible scenarios.  Thege calculations were done numerically in a reduced Hil-

(1) An additional ground-state degeneracy associated withq ¢ space wherdl,~N,J2 conserved quantitieénade out
some spontaneous symmetry breaking in the thermodynamic, ~ 47 tors fixed to be=1 (nond i
limit. As we will explain, it may be that the ground state of w4 an operators are fixed to be=~ (nondegenerate

orders in the three-sublattice pattern discussed in Sec. V E égpresentatlo)n By construction the_ spectrum does not de-
eoend on these choicéthat is, the origin of the entropyut

most likely. In particular, if the system was a three-sublattice® 'S also possible to check thduu;) correlations do not

crystal in theu variables, the spectrum would have a groundde’fpe.nOI either on the sector. However, we stress that it is, in
state with a smalf quasidegeneracignoring the exponen- principle, possible to have different correlations in a ground

Y state, which would be a linear combination of the ground
tial factor coming from thew degrees of freedojrseparated which wou I inati grou

: o X states of different sectors. This is similar to the question of
by agapto higher excitations. This does not seem to be thejimer dimer correlations discussed previously. We have not

case since we could not identify a small set of energy levelg, estigated these effects which are related to the possible
adjacent to the ground state above which a significant 93Brdering pattern, which may be selected by small perturba-

could exist. _ tions in the ground state manifold.
(2) In the second scenario, the low-energy states may cor- the results are summarized in Figs. 20—22. Figure 21

respond to a gapless mode of excitations in the system. Aljoay indicates that the most important correlations appear
though we have no precise theoretical prediction for the nag; the porder of the Brillouin zone. More precisely the cor-

ture of such(critical) excitations in this two-dimensional ners of the Brillouin zonekg=(*4m/3,0) and the middle
dimer model, gapless excitations are reminiscent of the Oneﬁoints of the borders Bof _the érillouin zonek,
1

dimensional analogwhich has fermionic critical excitations "~ _ B
at low energy, see Sec. V D concerming fhaenodel on the — (0:27/ V3), kn,=(m,—ml\3), andky =(m,m/\3) are

chain. According to the single-mode approximation dis-

cussed in Sec. VID these gapless excitations would only o566
exist at a finite value of momentum.
O o O
B. Correlations °c e
We looked for the possibility of long-ranged u; corre-
lations in the ground state. We define a static structure factor
S(K) in the usual way:
1 o] o o]
S(k)= (0 e 42
()Nps<|MkMk|> (42 O 0o O
N O
1 . NN AN
= 2 & N0l piw0), (43 _
Nps 77 FIG. 21. Structure factoB(k) = 1/N{u_ ) represented in the

first Brillouin zone of the triangular lattice foN,=48 (144
kagome sitels The radius of the circle is proportional 8fk). S(k)
has a trivial divergence &=0 which is due to the fact that opera-
,U«k:Z e—ik-rilui _ (44) tor (u;) is nonzero at every site. This peaklkat 0 is not repre-
i sented here.

where
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FIG. 23. Static susceptibilityy(k) for the wave vectors K
FIG. 22. Top: structure factor &=k, . Bottom: Structure fac- =Kk, andk=kg) where correlations are the strongest. Long-range
tor atk=kg . The dotted lines are obtained by a least-square fit oforder with spontaneous symmetry breaking would imghy N?,
the forma+ bNFjsl+cN*32. The dashed line is the mean-figlg.  Which does not appear to be satisfied. The dotted line is a least-
(40)] prediction forS(kg)/Nys. The quick reduction of the crystal square fit of the formy(kg)=aN+b.
order parameter with the system sizempared with the mean-field
resul) suggests that the crystal is unstable to fluctuations. The C. Static susceptibility

analys_is of the related susceptibilities confirms t8@)/N is in- To get more insight into the possibility of some crystalline

deed likely to extrapolate to zero whéfys—e>. order in theu variables we calculated the static susceptibili-
ties y(k):

the reciprocal lattice points where the correlations are the

strongest. kg correspond to a three-sublattice structure (k)= 1 et p—k

whereask, is related to a two-sublattidstripelike) order. A X 2Nps 2N '

(weak tendency to a three-sublattice ordering can been se€fnere \ is the strength of an infinitesimal symmetry-
directly in Fig. 20, which represents real-space (:orreIation%r“:,aking| perturbation

in the ground state of thé&l,.=48 sample(144 kagome

siteg. Almost all the sites with a positive correlatighlack 1

circles are located on the same sublatti@cording to a Hx:z Mi— EMMkJF M) (46)
three-sublattice decompositipas the reference site.

To check whether these correlations could remain longy(K) is obtained numerically by measuring the expectation
ranged in the thermodynamic limit we pl&(k)/N,sas a  Vvalue ofu,+u_ in the ground state of the Hamiltonian Eq.
function of N5 (see Fig. 22 As a result,S(k)/Nps seems to _(46) in the_ presence of a sm_all perturbation. The susceptibil-
extrapolate to a very smalpossibly 0 value in the limit of ity iS obtained by extrapolating the result xo=0. o
large systems. This suggests neither two- nor three- sublat- The.stanc susgepnblhty is a rather sensitive probe since it
tice “crystalline” order in the expectation values of the =~ Must diverge adl,in systems that spontaneously break the
operators. However, the data ket kg should be compared translation symmetry in the thermodynamic I|nr’ﬁth the
with the mean-field state described in Sec. V E 3. According’tn€r hand, it remains finite if there is no ordering at the
to the expectation values given by E§9) we should have c_orrespono!mg wave vector. The results fork, and k
S(K)/N,=0.0182 in the thermodynamic limit. While the ex- ;kB are Sk'szpllayed d'rt‘hF'g' 23x(k) S.?ril""’s no tke“d.e”‘?y_to
trapolation of the numerical results of Fig. 22 cannot distin- Iverge a A an ezlncrease Withls Of x(kg) is sig
guish such a small-order parameter from a disordeed nificantly slower than- N, as suggested by the rather good

- g " . fit obtained with y(kg)=aNyst+b (dotted line in Fig. 238
c_rmcal) phase,. the' pre.dlctlon of the mean f|elq apPproXiMa-g, +hese reasons we think that the system does not develop
tion (dashed line in Fig. 22turns out to be significantly

different from the exact ones. In the mean-field approxima—long_rangedm“j correlations in the thermodynamic limit.

tion S(ky) is given byS(ke)/N.c=0.0182+ 0.6279N. . (the '€ data fon(kg) (which neither diverges likBlg, nor stays
1/N,s contribution is just the Iogal contribution ofag?iven site constant might be interpreted as a proximity to aitical
ps ™= . point where a three-sublattice structure would appear.
and its six neighbops On the other hand, the exact value of
S(kg)/Nps decays much faster witN ;. This means that the
reduction of the crystal order paramet{kg)/N,s with the
system size is mainly caused by long-wave length fluctua- We now turn to the analysis of the long-wavelength fluc-
tions rather than by local contributions. This is a serioustuations in the system. The structure facg&k) is repre-
indication that the three-sublattice crystal is unstable withsented as a function ¢k| in Fig. 24.S(k) seems to vanish at
respect to these fluctuations. least asS(q)~|k|? and probably faster. A-|k|* behavior

(45)

D. Long-wavelength fluctuations
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T L nates the degeneracy. We are not aware of any other model
F ] with a similar behavior. Going from the KAFH model to the
n model we made some crude approximations. The first one
was to reduce the spin Hilbert space to a short-range RVB
one. We provided several arguments to support this approxi-
mation but some additional studies would be required to ana-
N,,=48 B lyze this question further. The second drastic approximation
N =28 g i was to reduce the dimer dynamics induced by the Heisenberg
L interaction to that of thex model and itssigns This can be
L 2 _ qualitatively justified for the KAFH in the temperature re-
L BT ~lal . gime corresponding to the low-temperature peak of the spe-
. cific heat. If that picture is correct, the degrees of freedom
S — involved in that peak would correspond to theN,J2
=N/6 uncoupled degrees of freedom of thenodel. Theu
lal model can be defined on any lattice made of corner-sharing
FIG. 24. Long-wavelength behavior of the structure faGtk) tria_ngles, it could, therefore, provide a rather g_eneral expla-
for different sample sizes. nation for a large entropy at low temperature in the corre-
sponding frustrated spif-models. Determining if some or-
looks plausible and is reminiscent of quantum Hall efféct. der eventually develops at much lower temperatures would
As explained before, the dispersion relation is flat in thisamount to analyze a degenerate perturbation theory in the
model. However, one may be interested in the excitationground state manifold of the model.
that can be created by the action of tpeoperatorsonly An important question is to know whether the model

(excludingy). Such a variational excited state with momen- riahzestha tntiw pha?e or If it is a(;.g tCI’IthCBJ pom(tj. WZ hﬁve
tum k can be constructed from the ground state in the spiritS own that tn€é most serious candidate for an ordered phase,

of the single-mode approximation: if any, is the three-sublattice crystal. However, we gave sev-
' eral indications(spectrum, correlations, and susceptibjlity

15(q)]

|K)= 2, 0). (47 suggesting that it is not stable. Instead we suggest that the
system might be at a critical point. If we think of a dimer
The energy(relative to the ground-statef |k) is model as a system of hard-core bosons, it is interesting to

compare our findings with some known bosonic phases. Let
us first come back to the gapped RVB state realized in the
Wps['u*k’[H”uk]] solvable QDM of Ref. 21. That state, which is the equal-
w(k)= SK) : (48 amplitude superposition of all dimer configurations
(Rokhsar-Kivelsoff state, is very similar to a Bose-Einstein
Since the numeratofoscillator strengthbehaves, as usual, condensatén the sense that its wave function can be ob-
as ~|k?| at small|k|, we find that|k) is not a low-energy tained by putting all dimers in the same zero-momentum

excitation as soon a$(k) vanishes like|k|? or faster— state>® The important difference from a conventional super-
which seems to be the case. This is suggestive of a nonzeflid is that the dimer model has no U(1) gauge symmetry
gap for zero-momentum excitations. (and therefore no gapless “sound” mode or conserved inte-
ger chargg but a discrete’, gauge symmetr§t With that
VII. DISCUSSION AND CONCLUSIONS comparison in mind, the ground state of themodel would

neither be a condensate nor a crystal but it ¢pslessexci-

We have introduced a QDM on the kagome lattice with atations. This is rather unusual in a model that has no continu-
kinetic energy that allows from three to six dimers to reso-ous symmetry at all. In addition, our model has a structure
nate around hexagons. The crucial difference with previousactor S(q) for () correlations, which decays 4g|? or
QDM is that dimers move with amplitudes that have non-faster in the limitq— 0. In a single-mode approximation this
trivial SignS inherited from the Underlying Spé’]mOdel. Ex- would |mp|y a gap forq:O excitations.
ploiting the algebraic properties of the conserved quantitieS |n order to study the spectrum of the model we used a
(w operatory, we showed that the model has an extensiverepresentation in which the degrees of freedom responsible
entropy at zero temperaturesa(2) per kagome site—and is for the extensive entropy are frozen. Themodel is local in
a dimer liquid. the dimer variables but the effective Hamiltonian describing

The starting point of this study was the sgirHeisenberg the nondegenerate spectrum turned out to be nonlocal in
model on the kagome lattice. Concerning this problem, outerms of the original dimers. These effective long-ranged in-
main result is that a high density of singlet states at lowteractions between physical degrees of freedom might be an
energy might have a real quantum origin and may not just bémportant ingredient for the appearance of an exotic liquid.
the remainder of the local degeneracies of the classicdfrom this point of view, there might be some similarities
model. The mechanism that produces the entropy ofithe between thew model and some two-dimensional quantum
model requires one to use nonlocal degrees of freedom isystems of Bosons with long-ranged interactions. Exotic lig-
order to compute the spectrum in a representation that elimiid states, which are not superfluid, have been proposed for
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these systems, including a quantum hexatic pA%%eOn  and the region where they are different. SificandD’ have
the other, hand a critical Bose fluid can exist without longthe sames” on every hexagon,D|D’) cannot contain any
range interactions and such a phase can be stabilized by clgexagon and therefore contains no loop at all.
clic ring-exchange&® A striking feature of these new (b) Any pseudospin configuration has a corresponding
phases is the existence of gapless excitations dioeg in dimer state. The transition graph betwdap and the dimer
the Brillouin zone, as in a Fermi liquid. We have no direct configuration we are looking for will separaté= + 1 hexa-
indication of such a behavior in the kagomemodel, except gons fromo“= —1 ones. The actual path of these loops will
for the existence of a fermionic representation, but such @epend onD, but for a given reference dimerization only
scenario is certainly an interesting possibility that should bene such path exists. The reason for this is easily understood
tested in future studies. by looking at a single hexagon: whate\2g may be, there is
always a single loop that surrounds this hexagon only.

We can check the above property by a direct counting. On
the one hand, we have'®? pseudospins configurations and

We are grateful to C. Lhuillier, F. Mila, R. Moessner, and 23~ pairs of nonequivalent configurations. On the other
M. Oshikawa for several fruitful discussions. Numerical di- hand, there are "*"! (see Ref. 1 dimerizations on a
agonalizations of QDM models were done on the Compadagome lattice withN sites and periodic boundary condi-
alpha server of the CEA under Project No. 550. tions. The agreement is found by remarking that the number
of dimerizations has to be divided by 4 to get the size of a
single topological sectéf
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APPENDIX A: ZENG AND ELSER’S PSEUDOSPINS
REPRESENTATION OF DIMER COVERINGS

H H X
Zeng and Else(ZE) realized® that a close correspon- 2. Pseudospin flip operatorer

dence between Ising configurations of pseudospins sitting on One interest of the ZE pseudospin representation is that

hexagons and dimer configurations on the kagome latticthe o}, operator, which flips the pseudospin at positiprtan

(within a given topological sectpicould be used. We used be expressed in a simple way in termsl@fal dimer opera-

this representation in a previous wétho define an exactly tors. It seems that ZE did not realize this very useful property

solvable quantum dimer model. In this section we review theof their representation. The simplest dimer moves involve

pseudospin representation. loops around hexagons. These 32 loops are represented in
Table I. The corresponding operators

1. o* component

We first need arfarbitrary) reference dimer configuration Lo=[La){Lal+La){Lal (A1)
|Do). We will associate a pair of pseudospin configurations
{of= %1} cnex. With any dimer configurationD) (belong-  shift the dimers along the loop“ if it is possible and anni-
ing to the topological sector dD,)) in the following way.  hilate the state otherwise. We will now prove thst is the
(1) Draw the loops of the transition graph ¢D|D). sum of all the 32 kinetic operators of hexagan
(2) These loops must be considered as domain walls sepa-
rating hexagons where the pseudospins are up and hexagons 32
where they are down. This can be done in a consistent way o= L,. (A2)
becauséd andD are supposed to be in the same sector and a=1
any closed path will necessarily cross an even number of
domain walls. ) ) A )
(3) There is a two fold redundancy in the above prescrip- .The fact th_at this sum of dimer qperatdr% realizes the
tion because the up and down hexagons can be exchang&Rin algebra is not obvious. In. partlc.ular, the fact that /these
without changing the loop pattern. Since there is no naturaPPerators commute at two neighboring hexagbrand h
way to decide where is the interior and where is the exteriofmust be verified, since, in generl, ,(h),L,.(h")]#0.
of a closed loop on a finite sample, a pseudospin configura- Consider an arbitrary dimerizatid) in the vicinity of
tion {of=0c(h)} and its reversed counterparfor= hexagonh. The crucial point is that all the kinetic operators
—a(h)} represent the same dimer covering. L,(h) but one annihilatg D). This is a property of the
This establishes a one-to-one correspondence betwedlagome lattice that we used before: for any given dimeriza-
dimer coverings of a given topological sector goairs of  tion one and only one loop can surround hexadopnSo
pseudospin sates related by a global pseudospin flip. TH®')=0c*(h)|D) is a dimer configuration that differs from
proof can be done in two steps. |D) by a single loop arount. Using thes? base to represent
(@ If two dimer configurationd andD’ are associated dimer coverings we know that such a state is unique and is
with the same pseudospin stdig to a global pseudospin the state obtained froiD) by flipping the pseudospin &t
reversal, they are identical. The transition grapd|D’) can ~ Thus we have shown that*(h) o?(h) = — o*(h) o*(h).

be viewed as the “difference” between grapfi3,|D) and One can use a very similar reasoning to show thgh)
(Do|D"). This means that th€D|D ') will have loops sepa- and ¢*(h’) commute wherh#h’, but this result is most
rating regions where the pseudospins coincid®iandD’ easily obtained by the arrow representation.
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3. Counting dimer coverings with pseudospins

6
The Ising basis of ZE's pseudospins provides a way of IHl flo*(hi),o*(hi1)], (B1)
counting the numbefV" of dimer coverings on any lattick _ _
that is the medial lattice of a trivalent one. The result is ~ wheref is equal to—1 when the two pseudospins are both
down o*(h;)=c*h;.1)=—1 and 1 otherwise. The product
, = q2Nps A3 runs over the six neighbors; of h numerated in a cyclic
Naim.coveringe™ @2 (A3) way. f can be explicitly written as a polynomial:

whereN s is the number of pseudospins ands the number flo?,0%]=(1+ o2+ o%— a2od). (B2)
of topological sectors, it is related to the genusdoy 229 in Lel e 1T e

the two-dimensional cases. The factor'2comes from the We eventually have an expression ffh) as a polynomial
fact that a dimer configuration corresponds to two pseuof ZE pseudospins operators located on neighbots of
dospin states. Using the Euler relation we can check that Eq.

(A3) indeed coincides with the result obtained with the arrow

representatiofiEq. (1)]: e(h)= eref(h)i E/Hf

ref(

6
) aZ<i>i1]1 flo?(hy),0%(hi+1)].
(B3)

The left-hand side is both a local and a reference-
independent operator. On the right-hand side, the information
APPENDIX B: 11 KINETIC OPERATORS AND ZE on the arrows i-n the reference configuration is present at
PSEUDOSPINS several places: ir{h), in the set of sited\(h), as well
as in theo? operators. It is possible to check directly on this
In order to write u with o* and ¢* only, we need to expression thaé(h)o*(h) satisfy theu algebra.
express the siga(h) of Egs.(10) and(12) in terms of thes”
operators on the neighboring hexagons. We will do this with APPENDIX C: REMOVING THE EXTENSIVE
the help of the arrow representation. The argument general- DEGENERACY

izes easily to the. operators. - .
First draw the arrow representation of the reference To perform the explicit diagonalization, it is useful to re-

dimerization| D) in the vicinity of hexagorh, as in Fig. 12. move the extensive degeneracy. Let us denoteChy

. ; =1,... N, the commuting and independent operators in-
Each neighboring hexagon bdfhas two arrows that belong C A
to the star ofh. These arrows can eitheA{) point toward troduced in Sec. VE 5 and, = il. thglr e|genvalues.' we
the exterior ofh, (A,) point toward the interior of, or (8) &N decompose the Hilbert space in eigenspacgls using
point in two different directions. In Fig. 12, for example, we the projectors
have no hexagon in cagg;, two in caseA,, and four in Pe=1(1+C,)
caseB. First look at the change ing,(h) when a single 2T el
neighboring pseudospin is flipped with respect to the refertt is then sufficient to work within the reduced space where
ence configuratior(it has o?=—1). If the corresponding c, are all equal to 1, for example. The reduced space is then
hexagon is of typé\; (A,), ny,(h) is decreasedincreasefi  generated as follows. Consider the stéfs(h)=1};{I,})
by 2 units. If that hexagon is of tyd®, ny,(h) is unchanged. where alls(h)=1, and the integrals of motion have some
On a state where a single pseudospin is down, we havealues{l,}. This state exists, is unique, and has the property

therefore, showed thai(h) = ereN)ITic 5 nyo*(1) Where  of transforming the action of.(h) into that of (h) for all
A h) is the set of the n eighbors bfthat are of typeA; or  h. We project this state to the eigenspdcg} =1,
A, in the reference dimerizatiom,.{(h) is the value ofe(h)
in the reference state. o )

Now look at the value ofe(h) when the neighboring |Q;{Ik}>:1;[ PEItsth)=1}{1d)
pseudospins are in an arbitrary stat&(h;)==1. If two
pseudospins are flipped on hexagons that are themselves figstd then generate the whole subspgze=1} by the action
neighbors, one arrow is flipped twice and therefore remaingf the monomials inu
unchanged. This adds tg¢h) a —1 factor, which multiplies
the single pseudospin factor discussed above. This can be )
seen on the example of Fig. 12. If the pseudospin of the hll p()™Q (1),
hexagon containing the sites'(3,3") (type A,) is flipped,
the signe(h) changes; but if hexagon (2,2') (typeB) is  With n,=0,1. Roughly half of the spins can be eliminated
flipped, e(h) is not affected. However, iboth hexagons are recursively by the following procedure. For spins belonging
flipped, e(h) is unchanged too. In addition to the?(h;) to theA sublattice, we bring«(h) at right using the commu-
factors coming from hexagons belongingig«(h), we must  tation relations, we transform it ip.(h), which is 1 by con-
add a—1 contribution for eachpair of consecutive pseu- struction. Some of the spins can be eliminated using the in-
dospins that are simultaneously inod(h;) = — 1 state Such  tegrals of motiorl,.. And finally, one of the spins entering a
a factor is given by bow-tie operator can be eliminated by replacing it with the

Ndim. coverings— 2292N/3+2_29_l: 2N/3+l- (A4)

Nps
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product of the other three spins in the bow tie and the opera- (Xni;)=7(X). (D8)
tor T(h). The latter operator is brought to the right, trans-

formed inT(h) whose value is 1. Similarly, one can con-

struct the eigenspace for any values{of,}. The passage

from a sector of fixedc,} to another can be realized by 1 5
-~ ; ; (Nnij) = 15=(N)". (D9)

operatorsu(h) belonging to one of the sublattic&C,D.

Since these operators commute with the Hamiltonian, then order to complete the demonstration we still have to show

spectrum of}{,, will be the same in all the sectors, which 4t gperator®, can be constructed for any triangle. Let the

proves that the global degeneracy of the spectrumis 2 state|0) be an eigenstate G(acA) and T(beB) de-

The action of the Hamiltonian on the reduced basis is ribed. in the preceding section. Depending on its position
computed using the same procedure as above. The fact tha P g - Dep 9 P ’

we work in a space with dimension divided b{/»#? allows relative to the _four sublattic.elég B, C andD, a triangle'(123)
us to perform numerical diagonalization for relatively |arge_(onAkagom¢W|Il demand s_llghtly dlﬁerent Const_ructlons for
systems, up tdN =48, its O; operators. For brevity, we will only consider the case
of a triangle located between a hexagoa A and a hexagon
b e B. It generalizes straightforwardly to the other cases. Let
APPENDIX D: DIMER-DIMER CORRELATIONS i=1 be the common site of hexagoagndb, i=2<a and
=3eb. It can be checked that the following choice satisfies
gs.(D1) and(D2):

Using X=1 we get that the dimer density $sand usingX
=ny, (a remote link we find

We show here that the eigenstates of the Hamiltonian o
the © model can be chosen to have vanishing dimer-dimer
correlations beyond a few lattice spacings.

Let us consider a triangle (1,2,3) on the kagome lattice. O,=T(b) (D10)
On these three sites we may define an arrow operator o
whose value is 1 if the corresponding arrow points toward O,=u(a)T(b) (D11
the interior of the triangle and 0 otherwise. With this defini-
tion, the dimer occupation numbey, on bond (12) isnAlz Os=11(a) (D12)
=a;a,. Now we assume that we have three operafors
(i=1,2,3), which satisfy The result given Eq(D9) shows that dimer-dimer corre-

. . lations are extremely short rang®&y.
Vi, Oiai=aiOi, (Dl)
A . APPENDIX E: FERMIONIC REPRESENTATION AND
Vi#j, Oa=(1-)0;, (D2) INTEGRALS OF MOTION
0;]0)==+|0). (D3) Integrals of motion Let us analyze the case of closed

R systems with the topology of the torus, which is the geom-
These relations just mean th@j flips the arrows on sites 2 etry we used for the numerical diagonalization. The lattice on
and 3 but does not touch the arrow 1, ) is a ground-  which theu operators live is triangular and it is made by the
state of the model which is also an eigenvector@r No-  centers of hexagons of the kagome lattice. We egl] m,,
tice that if O, and O, exist, 0;=0,0, is a valid choice. Ms the number of closed lines in each elementa6ry direction
Under these conditions, we show that are uncorrelated ©n the lattice, having lengthy , n,, ns respectively’® so that

. . A N,c=mM;n;=myn,=msn,;. We denote b}N| the total num-
ps 11 2112 3113
with any other bond that is unaffected by the th@ﬁ As ber of ch i M . ) . Wwe | || yI . Kk

we will explain, O; will be realized as local combinations of _ 1,... M the closed straight lines on the triangular lattice

w andT. From Eqs(D1) and(D2), it is simple to check that andl, andl,. , the lines on the corresponding kagome lattice
bordering the line_, (with obvious periodicity conditions

N103=03(1 Ny~ Npg—nNy) (D4)  Associated with each kagome lihg, we can define the fol-
(plus cyclic permutations Now let X be any operator that 0Wing operators
commutes with the threéi [later we will choseX=1 or . H
X=ny,, where kl) is a remote bonl Using Eqs.(D3) and =  Tu= ~
(D4), the correlation(Xn;;) becomes K j];'l[k Yie Tk j]';I[k Y
<Xn12)=<0|Xn12(©3)2|0) (D5)  where the products run over the sifesf the kagome ling, ,
with some ordering indicated by the arrow. Since every line
= (O|©3X(1— Ny~ Ny3— n31)©3|0> (D6) I« visits any hexagon zero or two times, operatﬁpsmdf“k
commute with all the operatorg(h) and z(h). From the
=(X) = (Xnyz) = (Xnzz) —(Xnzy). (D7) correspondence with the dimer states, we know haand
Using the relations obtained by cyclic permutations and solvI’, correspond to dimer moves on nontrivial loops around the
ing the three linear equations we find torus, so they change the topological seéfor.
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In each topological sector we can construct the followingangles. Moreover, integrals of motion corresponding to the
integrals of motion, associated with the closed straight linet., lines with the same orientation on the lattice are not all
L, on the triangular lattice: independent,

my

|k=(—i)“r;r;l=h11k w(h), IT 1e=(—=i)ymm=(—i)Nes (E1)

L — and similarly for the other two orientations. Such a constraint
Te=(=)" T L= 11 ), on physical states is not unexpected, since the product of the
helg lines with some orientation contains all the operataf$)
wheren denotes the number of hexagonslgnand the ar-  exactly once, that is, all the operatoystwice, so it has to be

rows denote the ordering iﬁk,fk. The third member of prc}ﬁoég?]gﬁj;i%;hfhggng% at most— 3 independent inte-
both equalities is invariant by circular permutation of the S . P
sites on the lind,. grals of motion, wheréM is the number of different closed

_ _ ~ straight lines one can draw on the triangular lattice wrapped
The two sets of integrals of motiofi}, {I\} are not oy the torugin some cases, tHd — 3 lines are not indepen-

independent. To check this, we use the commuting variablegent and some of the quantitigscan be written as products

~ of the others
s(h)=u(h)u(h), Basis for the Hilbert spaceThe commuting quantities

measuring the parity number of fermions around the hexs(h) andl, can be used to label the states in the Hilbert

agonh, space. Let us first check that we obtain the right dimension.
Due to theM—2 independent constraimﬂhel_ks(h)=1,
s(h) = T = (—i)6 1—2n). only Nps—(M—2) of the operators(h) are independent.
(h) H 7% =(=1) H ( 2 Both type of operatorss(h) andl,, can take only two val-
Then ues,x1, or =i for I, on a line of odd length. Taking into

account the topological degeneracy, the number of states in
5 the Hilbert state is & 2Nps™(M=2)x 2M=3_oNpst1 \hich is
Lae=(=D" [T sthy=(-1)", the right dimension of the dimer spa¢® the case when
hel there are extra relations between the lihgs the number of
where the last equality is a consequence of the constraint dndependent integrals of motion and the number of con-
the fermion number around the two types of kagome tri-straints ons(h) are diminished by the same numper
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